Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 151

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Japan Atomic Energy Agency; Contribution to the decommissioning of the Fukushima Daiichi Nuclear Power Station and the reconstruction of Fukushima Prefecture at the Naraha center for Remote Control technology development

Morimoto, Kyoichi; Ono, Takahiro; Kakutani, Satomi; Yoshida, Moeka; Suzuki, Soichiro

Journal of Robotics and Mechatronics, 36(1), p.125 - 133, 2024/02

The Naraha Center for Remote Control Technology Development was established for the purpose of developing and verifying remote control equipment for promoting the decommissioning of the Fukushima Daiichi Nuclear Power Station and the external use of this center was started in 2016. The mission of this center is to contribute to the decommissioning of the Fukushima Daiichi Nuclear Power Station and for the reconstruction of Fukushima Prefecture. In this review, we describe the equipment related to the full-scale mock-up test, the component test for a remote-control device and the virtual reality system in this center. In addition, the case examples for usage of these equipment are introduced.

Journal Articles

Void reactivity in lead and bismuth sample reactivity experiments at Kyoto University Critical Assembly

Pyeon, C. H.*; Katano, Ryota; Oizumi, Akito; Fukushima, Masahiro

Nuclear Science and Engineering, 197(11), p.2902 - 2919, 2023/11

 Times Cited Count:1 Percentile:68.31(Nuclear Science & Technology)

Sample reactivity and void reactivity experiments are carried out in the solid-moderated and solid-reflected cores at the Kyoto University Critical Assembly (KUCA) with the combined use of aluminum (Al), lead (Pb) and bismuth (Bi) samples, and Al spacers simulating the void. MCNP6.2 eigenvalue calculations together with JENDL-4.0 provide good accuracy of sample reactivity with the comparison of experimental results; also experimental void reactivity is attained by using MCNP6.2 together with JENDL-4.0 and ENDF/B-VII.1 with a marked accuracy of relative difference between experiments and calculations. Uncertainty quantification of sample reactivity and void reactivity is acquired by using the sensitivity coefficients based on MCNP6.2/ksen and covariance library data of SCALE6.2 together with ENDF/B-VII.1, arising from the impact of uncertainty induced by Al, Pb and Bi cross sections. A series of reactivity analyses with the Al spacer simulating the void demonstrates the means of analyzing the void in the solid-moderated and solid-reflected cores at KUCA

Journal Articles

Multiphysics analysis of reactivity changes due to solution flow in the past criticality accident at Windscale Works in 1970

Fukuda, Kodai; Yamane, Yuichi

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 9 Pages, 2023/10

This study presents the results of multiphysics analysis, which investigates the change of reactivity caused by the motion of fluids, of Windscale Works criticality accident. The purpose of this study is to confirm previously reported trends of emulsion formation and increase in reactivity by the multi-physics analysis which takes the motion of fluids into account. Continuous energy Monte Carlo code MVP3 was used to calculate reactivity based on the material distribution obtained by CFD calculation using OpenFOAM. An interface program in python was developed to transfer data from OpenFOAM to MVP3. The change of reactivity caused by the motion of solutions was calculated without considering the generation of heat by fissions in a system that simulated the transfer vessel at Windscale Works. As a result, trends of emulsion formation and increase in reactivity were confirmed. The influence of the resolution of the calculation system on the results was also discussed.

JAEA Reports

Reports on research activities and evaluation of advanced computational science in FY2022

Center for Computational Science & e-Systems

JAEA-Evaluation 2023-001, 38 Pages, 2023/07

JAEA-Evaluation-2023-001.pdf:1.04MB

Research on advanced computational science for nuclear applications, based on "the plan to achieve the medium- and long-term goal of the Japan Atomic Energy Agency", has been performed by Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established a committee consisting of external experts and authorities which evaluates and advises toward the future research and development. This report summarizes the results of the R&D performed by CCSE in FY2022 (April 1st, 2022 - March 31st, 2023) and their evaluation by the committee.

Journal Articles

Radio-tellurium released into the environment during the complete oxidation of fuel cladding, containment venting and reactor building failure of the Fukushima accident

Hidaka, Akihide; Kawashima, Shigeto*; Kajino, Mizuo*

Journal of Nuclear Science and Technology, 60(7), p.743 - 758, 2023/07

 Times Cited Count:2 Percentile:87.3(Nuclear Science & Technology)

An accurate estimation of radionuclides released during the Fukushima accident is essential. Therefore, authors investigated Te release using the Unit emission-regression estimation method, in which the deposition distribution is weighted based on the hourly deposition obtained from mesoscale meteorological model calculations assuming Unit emissions. The previous study focused on confirming the applicability of this method. Subsequent examination revealed that if any part of the time when a release have occurred is missing from the estimated release period, the entire source term calculation will be distorted. Therefore, this study performed the recalculation by extending the estimation period to cover all major releases. Consequently, unspecified release events were clarified, and their correspondence to in-core events was confirmed. The $$^{rm 129m}$$Te release caused by Zr cladding complete oxidation can explain the regional dependence of the $$^{rm 129m}$$Te/$$^{137}$$Cs ratio in the soil contamination map.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2020

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2023-009, 165 Pages, 2023/06

JAEA-Review-2023-009.pdf:5.76MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Management Department and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Criticality and Hot Examination Technology and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Medium- to Long-term Plan" successfully and effectively. And, four research centers which are Advanced Science Research Center, Nuclear Science and Engineering Center, Nuclear Engineering Research Collaboration Center and Materials Sciences Research Center, belong to NSRI. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2020 as well as the activity on research and development carried out by Collaborative Laboratories for Advanced Decommissioning Science, Nuclear Safety Research Center and activities of Nuclear Human Resource Development Center, using facilities of NSRI.

Journal Articles

Preliminary analysis of randomized configuration patterns in modified STACY core

Shiba, Shigeki*; Iwahashi, Daiki*; Okawa, Tsuyoshi*; Gunji, Satoshi; Izawa, Kazuhiko; Suyama, Kenya

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The Nuclear Regulation Authority (NRA) has tackled the experimental approach for determining the criticality of pseudo-fuel debris plausibly simulating actual fuel debris since 2014, collaborating with the Japan Atomic Energy Agency. To elucidate the characteristics of the pseudo-fuel debris, the Japan Atomic Energy Agency modified the STACY (STAtic experiment Critical facilitY) to conduct critical experiments simulating fuel debris. Thus, we proposed three types of modified STACY core configurations. In critical experiments in the modified STACY core, it is important to judge whether the proposed modified STACY core configurations are representative of molten core-concrete interaction debris or not. In this study, we built pseudo-fuel debris models considering a volume ratio of pseudo-fuel debris to moderation (V$$_{m}$$/V$$_{f}$$) and calculated uncertainty-based similarity values (C$$_k$$) between the modified STACY core configurations and pseudo-fuel debris models using Tools for Sensitivity and Uncertainty Analysis Methodology Implementation-Indices and Parameters (TSUNAMI-IP) in SCALE 6.2. Consequently, the modified STACY core configuration loading structure rods we proposed completely resulted in high similarity to the pseudo-fuel debris models through V$$_m$$/V$$_f$$ values. The main contributions to C$$_k$$ values were $$^{235}$$U $$bar{nu}$$, $$^{235}$$U $$chi$$, and $$^{56}$$Fe (n,$$gamma$$), except for the pseudo-fuel debris model, including extremely high concrete components.

Journal Articles

Insight on the mechanical properties of hierarchical porous calcium-silicate-hydrate pastes according to the Ca/Si molar ratio using ${it in situ}$ synchrotron X-ray scattering and nanoindentation test

Im, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Morooka, Satoshi; Choe, H.*; Nishio, Yuhei*; Machida, Akihiko*; Kim, J.*; Lim, S.*; et al.

Construction and Building Materials, 365, p.130034_1 - 130034_18, 2023/02

 Times Cited Count:6 Percentile:67.49(Construction & Building Technology)

Journal Articles

Statistical optimization of nZVI chemical synthesis approach towards P and NO$$_{3}$$$$^{-}$$ removal from aqueous solutions; Cost-effectiveness & parametric effects

Maamoun, I.; Eljamal, R.*; Eljamal, O.*

Chemosphere, 312, Part 1, p.137176_1 - 137176_11, 2023/01

 Times Cited Count:3 Percentile:40.21(Environmental Sciences)

Journal Articles

Arsenic removal from contaminated water utilizing novel green composite ${it Chlorella vulgaris}$ and nano zero-valent iron

Islam, M. S.*; Maamoun, I.; Falyouna, O.*; Eljamal, O.*; Saha, B. B.*

Journal of Molecular Liquids, 370, p.121005_1 - 121005_11, 2023/01

 Times Cited Count:14 Percentile:90.69(Chemistry, Physical)

Journal Articles

Chloramphenicol removal from water by various precursors to enhance graphene oxide-iron nanocomposites

Idham, M. F.*; Falyouna, O.*; Eljamal, R.*; Maamoun, I.; Eljamal, O.*

Journal of Water Process Engineering (Internet), 50, p.103289_1 - 103289_16, 2022/12

 Times Cited Count:13 Percentile:91.35(Engineering, Environmental)

JAEA Reports

Review of research on Advanced Computational Science in FY2021

Center for Computational Science & e-Systems

JAEA-Evaluation 2022-004, 38 Pages, 2022/11

JAEA-Evaluation-2022-004.pdf:1.38MB

Research on advanced computational science for nuclear applications, based on "the plan to achieve the mid- and long-term goal of the Japan Atomic Energy Agency", has been performed by Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established a committee consisting of external experts and authorities which evaluates and advises toward the future research and development. This report summarizes the results of the R&D performed by CCSE in FY2021 (April 1st, 2021 - March 31st, 2022) and their evaluation by the committee.

JAEA Reports

Assessment report of research on development activities in FY 2021 Activity; "Computational Science and Technology Research" (Result and in-advance evaluation)

Center for Computational Science & e-Systems

JAEA-Evaluation 2022-003, 61 Pages, 2022/11

JAEA-Evaluation-2022-003.pdf:1.42MB
JAEA-Evaluation-2022-003-appendix(CD-ROM).zip:6.16MB

Japan Atomic Energy Agency (hereinafter referred to as "JAEA") consults an assessment committee, "Evaluation Committee of Research Activities for Computational Science and Technology Research" (hereinafter referred to as "Committee") for result and in-advance evaluation of "Computational Science and Technology Research", in accordance with "General Guideline for the Evaluation of Government Research and Development (R&D) Activities" by Cabinet Office, Government of Japan, "Guideline for Evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology" and "Regulation on Conduct for Evaluation of R&D Activities" by the JAEA. In response to the JAEA's request, the Committee assessed the research program of the Center for Computational Science and e-Systems (hereinafter referred to as "CCSE"). The Committee evaluated the management and research activities of the CCSE based on explanatory documents prepared by the CCSE, and oral presentations with questions-and answers.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2017

Nuclear Science Research Institute, Sector of Nuclear Science Research

JAEA-Review 2021-067, 135 Pages, 2022/03

JAEA-Review-2021-067.pdf:7.31MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2017 as well as the activity on research and development carried out by the Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Materials Sciences Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.

Journal Articles

Development of timing read-back system for stable operation of J-PARC

Yang, M.*; Kamikubota, Norihiko*; Sato, Kenichi*; Kikuzawa, Nobuhiro; Tajima, Yuto*

Proceedings of 18th International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2021) (Internet), p.927 - 930, 2022/02

Since 2006, the Japan Proton Accelerator Research Complex (J-PARC) timing system has been operated successfully. However, there were some unexpected trigger-failure events, typically missing trigger events, during the operation over 15 years. When a trigger-failure event occurred, it was often tough to find the one with the fault among many suspected modules. To solve the problem more easily, a unique device, triggered scaler, was developed for reading back accelerator signals. The performance of the module has been evaluated in 2018. In 2021, we measured and observed an LLRF signal as the first signal of the read-back system for beam operation. After firmware upgrades of the module, some customized timing read-back systems were developed, and successfully demonstrated as coping strategies for past trigger-failure events. In addition, a future plan to apply the read-back system to other facilities is discussed. More details are given in the paper.

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2015 & 2016

Nuclear Science Research Institute

JAEA-Review 2021-006, 248 Pages, 2021/12

JAEA-Review-2021-006.pdf:7.17MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Middle and long-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2015 and 2016 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Material Science Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.

JAEA Reports

Review of research on Advanced Computational Science in FY2020

Center for Computational Science & e-Systems

JAEA-Evaluation 2021-001, 66 Pages, 2021/11

JAEA-Evaluation-2021-001.pdf:1.66MB

Research on advanced computational science for nuclear applications, based on "the plan to achieve the mid- and long-term goal of the Japan Atomic Energy Agency", has been performed by Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established a committee consisting of external experts and authorities which does research evaluation and advice for the assistance of the future research and development. This report summarizes the results of the R&D performed by CCSE in FY2020 (April 1st, 2020 - March 31st, 2021), the results expected at the end of the 3rd mid and long-term goal period, and the evaluation by the committee on them.

Journal Articles

Uncertainty quantification of lead and bismuth sample reactivity worth at Kyoto University Critical Assembly

Pyeon, C. H.*; Yamanaka, Masao*; Fukushima, Masahiro

Nuclear Science and Engineering, 195(8), p.877 - 889, 2021/08

 Times Cited Count:5 Percentile:64.12(Nuclear Science & Technology)

Uncertainty quantification of lead (Pb) and bismuth (Bi) sample reactivity worth is numerically determined using the SCALE6.2 code system and experimental results obtained from the solid-moderated and solid-reflected core at the Kyoto University Critical Assembly (KUCA) to demonstrate the sensitivity coefficients of aluminum (Al) and Bi scattering reactions. From the results of the numerical analyses, the impact of $$^{27}$$Al and $$^{209}$$Bi scattering cross sections obtained using SCALE6.2/TSAR is disclosed on the Bi sample reactivity worth using Al reference and Bi test samples, although the uncertainty itself is small in the Bi sample reactivity worth.

Journal Articles

The Effects of steam addition on the unstable behavior of hydrogen-air lean premixed flames under the adiabatic and non-adiabatic conditions

Furuyama, Taisei*; Thwe Thwe, A.; Katsumi, Toshiyuki; Kobayashi, Hideaki*; Kadowaki, Satoshi

Nihon Kikai Gakkai Rombunshu (Internet), 87(898), p.21-00107_1 - 21-00107_12, 2021/06

The effects of steam addition on the unstable behavior of hydrogen-air lean premixed flames under adiabatic and non-adiabatic conditions were investigated by numerical calculations. Adopting a detailed chemical reaction mechanism of hydrogen-oxyfuel combustion modeled by 17 reversible reactions of 8 active species and diluents, a two-dimensional unsteady reaction flow was treated based on the compressible Navier-Stokes equation. As the steam addition and heat loss increased, the burning velocity of a planar flame decreased and the normalized burning velocity increased. The addition of water vapor promotes the unstable behavior of the hydrogen-air lean premixed flame. This is because the thermal diffusivity of the gas decreases and the diffusion-thermal instability increases. The effect of adding water vapor on the instability of hydrogen premixed flames is a new finding, and it is expected to connect with hydrogen explosion-prevention measures as in NPP.

JAEA Reports

Review of research on Advanced Computational Science in FY2019

Center for Computational Science & e-Systems

JAEA-Evaluation 2020-002, 37 Pages, 2020/12

JAEA-Evaluation-2020-002.pdf:1.59MB

Research on advanced computational science for nuclear applications, based on "the plan to achieve the mid and long term goal of the Japan Atomic Energy Agency", has been performed at Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established a committee consisting of outside experts and authorities which does research evaluation and advice for the assistance of the future research and development. This report summarizes the results of the R&D performed at CCSE in FY2019 (April 1st, 2019 - March 31st, 2020) and the evaluation by the committee on them.

151 (Records 1-20 displayed on this page)